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Abstract.  We prove that the Minimum Concave Cost Network Flow Problem with fixed numbers 
of sources and nonlinear arc costs can be solved by an algorithm requiring a number of elementary 
operations and a number of evaluations of the nonlinear cost functions which are both bounded by 
polynomials in r, n, m, where r is the number of nodes, n is the number of arcs and m the number 
of sinks in the network. 
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1. Introduction 

One of the most challenging problems of network optimization is the Minimum 
Concave-Cost Network Flow Problem (MCCNFP) which can be formulated as 
follows. 

Let G = (NG, AG) be a directed graph with node set N c  = {N~, . . . ,  Nr} 
and arc set Aa = { a t , . . . ,  an}, where each arc ai is an ordered pair of distinct 
nodes. Associated with each arc ai are a capacity qi C [0, -]-oc] and a concave cost 
function gi(t) : R+ --+ R+. Associated with each node Nj is a demand dj such 
that ~ = 1  dj = 0. Nodes Nj with dj < 0 are the sources, nodes Nj with dj > 0 
are the sinks. If dj is the demand of a source Nj then sj = - d j  is also called its 
supply. Aflow in G is any vector x E/~n such that 0 ~< xi <~ qi, i = 1 , . . ,  n. The + 
component xi is the value oftheflow on the arc ai. For each j ,  we denote the set 
of arcs entering (leaving, resp.) node Nj by N + ( N f ,  resp.) and define 

i:aiEA~ + i:aiEN~- 
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A flow x is feasible (more precisely, feasible to the demand vector d = (dl, �9 �9 �9 d~)) 
if aj(x)  = dj for every j .  The cost of the flow x is then the value 

n 

i=1  

The problem is 

MCCNFP: Given the demand vector d, find a feasible flow in G with minimal 
cost, i.e.: 

minimize g(x) 

s.t. aj(x)  = dj j = 1 , . . . , r  (1) 

O<xi<~qi  i =  1 , . . . , n .  (2) 

At the expense of introducing additional sources if necessary, one can always 
reduce the problem to an equivalent uncapacitated one, i.e. to a problem where no ql 
is finite (see e.g. [3]). Therefore, throughout the sequel, without loss of generality, 
we may assume that qi = + oc for all arcs ai. Under these conditions, if there is just 
one single source, the problem will be referred to as the single source uncapacitated 
minimum concave-cost network flow problem (SSU MCCNFP). 

In view of its relevance to numerous applications in operations research, eco- 
nomics, engineering, etc. MCCNFP has been the subject of intensive research (e.g. 
[3], [4], [6], [15], [19], [20], [27], [30]). For a discussion on the applications and a 
recent review of the literature on this problem, we refer the reader to the articles of 
Guisewite and Pardalos [8] and [9]. 

MCCNFP is a linearly constrained concave minimization problem. It is well 
known that even special cases of it, such as the fixed charge network flow problem or 
SSU MCCNFP, are NP-hard (see, e.g. [16], [8]). No wonder that despite the efforts 
of many researchers, all algorithms so far developed for general MCCNFP run in 
exponential time and can only handle problem instances of very small size. This has 
motivated the consideration of additional structures which might make the problem 
more tractable when present in MCCNFP. In fact, highly efficient polynomial time 
algorithms have been developed for a number of specially structured variants of 
MCCNFP ([2], [11], [17], [27], [28], [30], [31]). 

The difficulty of a nonconvex global optimization problem critically depends 
on the number of nonlinear elements (for example the number of variables that 
enter the objective function or the constraints in a nonlinear way). When this 
number is fixed certain nonconvex problems become polynomially solvable. Such 
is the case, for instance, of mixed integer linear programming problems with a 
fixed number of integer variables, according to a well known result by Lenstra 
[14]. For MCCNFP the elements on which the difficulty of the problem critically 
depends are the number of arcs with nonlinear costs and also the number of sources 
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(a set of h sources can be replaced by one single source along with h arcs with 
bounded capacity). It is therefore convenient to refer to MCCNFP with exactly 
h sources and k nonlinear arc costs as MCCNFP (h; k) or FP(h; k) for short. 
The mentioned result of Lenstra and also the result of Tardos [18] on the strong 
polynomial solvability of linear transportation problems suggest the conjecture that 
FP(h; k) for fixed h, k should be strongly polynomially solvable, too. 

In fact, this has been proved for FP(1 ;  1) ([13], [23]); see also [10], where a 
first polynomial algorithm for FP( 1; 1) was given), FP( 1; 2) and FP(2; 1) [25]. 
The aim of the present paper is to prove this conjecture for the general case, i.e. for 
arbitrary fixed natural numbers h and k. 

As in our previous paper [25], the method used in the sequel is based on a 
polynomial reduction of FP(h; k) to a production-transportation problem with 
linear transportation cost and nonlinear production cost. The latter problem can 
then be solved by a strongly polynomial algorithm presented in [26] and based 
on the parametric approach earlier developed for so called rank k quasiconcave 
minimization problems ([21], [22]). The resulting algorithm for FP(h; k) has a 
running time polynomial in the number r of nodes, the number n of arcs and the 
number ra of sinks and exponential only in h and k. In this connection, it should 
be noted that the send-and-split method of Ericksson et al. [3] is polynomial in r 
and n but exponential in ra. 

The paper is organized as follows. In Section 2 we first reduce the dimen- 
sion of the problem by constructing a network equivalent to the original one 
but generally with much less nodes and arcs. Next, in Section 3, we show that 
FP(h; k) can be reduced to solving a certain production-transportation problem 
with linear transportation costs and nonlinear production cost. These transforma- 
tions require a polynomial number of operations. In Section 4 we consider the 
case when min{h, k} = 1. It turns out that in this case the equivalent production- 
transportation problem has a concave production cost and hence can be solved by 
a strongly polynomial algorithm presented in our previous paper [26]. Section 5 
discusses the general case which requires some modification of the technique devel- 
oped in the cited paper. Finally Section 6 closes the paper with some concluding 
remarks. 

2. The Reduced Network 

As defined in the Introduction, FP(A; k) is the uncapacitated MCCNFP with h 
sources, and k nonlinear arc costs, i.e. the MCCNFP on a network G such that: 

dj < 0 f o r  j =  1 , . . . , h  (N1,...,Nharesources); 
d j > O f o r j = h + l , . . . , h + r a  (Nh+l,...,Nh+~aresinks); 
gi(t) : R+ --+ R+ is concave nonlinear for i = 1 , . . . ,  k; 

9i(t)=eit ,  e~/>0, for all i > k ;  

dj = O for all j > h + ra; q i = + e c f o r a l l i .  
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For the sake of simplicity we will further assume that there is at least one feasible 
flow in G (i.e., the system (1)(2) has at least one solution) and that 

gi(O) = 0 and gi(t) is nondecreasing on [0, +ec) .  (3) 

(Note, however, that g~ (t) may be discontinuous at point t = 0, as in the case of  fixed 
charge). As is known (see e.g. [3]), under these conditions the problem will always 
have a finite optimal solution which is an extreme flow (a flow corresponding to a 
spanning forest). 

For convenience the arcs a l , . . ,  a t  with nonlinear arc costs are called black; 
the other arcs are called white, and the unit cost ci >! 0 associated with a white 
arc ai is its length. By splitting certain nodes into two or several nodes connected 
by white arcs of  length zero if necessary, it may be arranged that the initial and 
terminal nodes of the black arcs are all distinct and none of them is a source or a 
sink. For reasons which will soon be apparent, we then rename the nodes of G as 
follows: 

�9 initial node (tail) of black arc ai : Wi(i = 1 , . . . ,  k); 
�9 terminal node (head) of black arc ai : Fi(i = 1 , . . . ,  k); 
�9 sources F k + l , . . . ,  Fk+h (so Fk+ i = Ni, i = 1 , . . . ,  h); 
�9 sinks: Wk+l,  . . . ,  l/Vk+m(SO Wk+j = Nh+j , j  = 1 , . . . , m ) .  

Also we set 

si=-di(i= 1,...,h); bj=dh+j(j= 1,...,m), s = ~ i .  (4) 
i = l  

Thus G is a network with sources Fk+l , . . . ,  Fk+h, sinks Wh-t-l,..., Wh+m, and 
black arcs ai = (Wi, Fi) , i  = 1 , . . . , k ,  where the supply of a source Fk+l is 
si > O,i = 1 , . . . , h ,  the demand of a sink Wk+j is bj > 0 , j  = 1 , . . . , m ,  the 
cost associated with a black arc ai is a nonnegative valued concave function 9i(t) 
satisfying (3), while the length of a white arc ai is ci >>. O. The problem we are 
concerned with is 

FP(h;  k) : Find a feasible flow x in G with smallest cost 
k n 

i=1  i = h + l  

Note that the network G may contain many other nodes than/71, . . . ,  Fk+h, 
W 1 , . . . ,  Wk+m. It turns out, however, that in solving FP(h;  k) we can replace G 
by a reduced network G*, equivalent to it, but having F 1 , . . . ,  Fk+h, W1, �9 �9 �9 W~+m 
as the only nodes. This reduced network can be constructed as in Figure 1. 

Let us call a path 7r in G a white path if it does not include any black arc; the 
length of a white path ~r is then c(~r) = ~ { c i  : ai C ~r } and a white path 7r is said to 
be shortest if  its length is smallest among all white paths with same origin and same 
end. Now, observe that if  we know the values 2i = ui, i = 1 , . . . ,  k of an optimal 
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w~ w~ wk 

F1 ~ Fk+h 

Wk+l Wk+2 Wk+,n 

Fig. 1. Network G*. 

flow ~- on the black arcs, then the values of  :~ on the white arcs can be determined 
by solving a linear transportation problem. Indeed, le t / /~ '  denote the network 
obtained from the original network G by removing all the black arcs and replacing 
the zero demands of the nodes W i ,  Fi ,  i = 1 , . . . ,  k with ui ,  - u i  respectively (so if 
ui > 0 then W i  becomes a sink and F / a  source in / /u ) .  Clearly the restriction .~' 
of  s to the set of white arcs of G is an optimal flow on//~' ,  i.e. an optimal solution 
of the m i n i m u m  cos t  f l o w  p r o b l e m  on the n e t w o r k  11 ~ wi th  only  whi te  arcs.  But it is 
immediate that the latter problem is equivalent to the l inear  t ranspor ta t ion  p r o b l e m  

on a network with supply points F1 , . . . ,  Fk, F k + l , . . . ,  Fk+h,  destination points 
W 1 ,  . . . , W k  , W k  + l , . . . , W k  + m , supply quantities u l , . . . ,  uk, s l , . . . , S h , demand 
quantities U l , . . . ,  uk, b l , . . . ,  bin, and with cost matrix [lij], where lii= + ~  for 
i = 1 , . . . ,  k ,  and lij  for i ~ j or i > k is the length of the shortest white path 
in G from F / t o  W j  (if no such white path exists, set lij  = + ~ ) .  Now let G* be 
the network that results from G by removing all white arcs and all nodes other 
than F 1 , . . . ,  Fk+h,  W1, �9 �9 �9 Wk+m, and introducing, for each pair (i, j )  a white arc 
(F i ,  W j ) ,  with length lij  as just defined (Figure 1). 

PROPOSITION 1. The n e t w o r k  G* is equ iva len t  to the or ig inal  n e t w o r k  G, in the 

sense  that  every  op t ima l  f l o w  in G corresponds  to an op t imal  f l o w  in G ~ wi th  equa l  
cos t  a n d  conversely .  

Proof .  f f  z E R~_ is an optimal flow in G and z i  = ui for i = 1 , . . . ,  k, 
then, as said above, the restriction of z to the white arcs of G is an optimal 
flow in/ /~ ' ,  and so determines an optimal solution z of the corresponding linear 
transportation problem. Therefore, ~ = (u, z) is an optimal flow in G* with same 
cost as z. Conversely, if ~ = (u, z) with u = ( u l , . . . ,  uk )  E R ~ , z  = [zlj], i = 

1 , . . . , k  + h , j  = 1 , . . . , k  + m ,  is an optimal flow in G* then an optimal flow 
z C R ~ in G (with equal cost) is given by + 

z~ = ui ( i =  1 , . . . , k )  (5) 

x t  = Z { z i j  " a~ E r i j }  ( t =  k + l , . . . , n )  (6) 

where Fi j  denotes the shortest white path in G from F / t o  W j .  []  
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R e m a r k .  Letz />  E L I ( 7 i + g + ( 0 ) ) + Z ,  cij ,  whereTi = limt~0+ g i ( t ) , g + ( O )  
denotes the right derivative o f g i ( t )  at t = 0 and ~ ,  means that the sum is extended 
to all white arcs (F~, Wj) in G* such that cij < +oc. It is easily seen that the optimal 
flow in G* does not change if every infinite length of a white arc is replaced by 
~7. Indeed, let (u, z) be a feasible flow in G* such that ZioJo > 0 on some white 
arc (Fi0, Wjo)  of infinite length. If (u ~, z ~) denotes a feasible flow in G* such that 
z~j = 0 on every white arc (Fi, W j )  of infinite length (such a flow exists by the 
feasibility of the problem), then one can find a cycle beginning at (Fio, Wjo) ,  such 
that z i j  - z~j > 0 on every odd arc of this cycle, while zi j  - z~j < 0 on every 
even arc. Upon subtracting a suitable value a > 0 from zi j  on every odd arc and 
adding a to z i j  on every even arc, the cost of (u, z) will be reduced by at least 

- ~ i =  1(7i + g+ (0)) - ~ .  ci j )  > O. This implies that (u, z) cannot be optimal. a(~7 k 
So the optimal flows will not change when every infinite length of a white arc is 
replaced by % and therefore, in the sequel, without loss of generality we can assume 
that every white arc in G* has a finite length. 

3. The Equivalent Production-Transportation Problem 

Let~ = ( u , z ) w i t h u  = ( U l , . . . , U k ) , Z - - - - - [ z i j ] , i  = 1 , . . . , kq -h , j  =- 1 , . . . , k+m,  
be a feasible flow in the reduced network G*. For every i = 1 , . . . ,  k + h, define yi 

to be the total amount of the flow 5 going from Fi to all the sinks W k +  1 , . . . ,  Wk+,~ ,  

i.e. 

k+m 
yi = ~ zi j  i =  1 , . . . , k  + h. (7) 

j=k+l 

Clearly, y E ~,  where 

k+h } 
a =  yeR +h:Zy =  . 

i=1  

(8) 

Now for a given vector y E f~ let us partition the network G* into two subnetworks 
(Figure 2): 

(1) an upper subnetwork G~, with h sources Fk+x, . . . ,  Fk+n of supplies 
sl - Yk+l, . . . ,  sn - Yk+n, k sinks F1 , . . . ,  Fk of demands Yl , . . . ,  Yk and k inter- 
mediate nodes (nodes with null demand) W1, . . . ,  Wk; 

(2) a lower subnetwork G~ with k + h sources F1 , . . . ,  Fk+n of supplies 
Yl , . . . , Yk + n and ra sinks Wk+l, . . . ,  Wk+,~ of demands bl , . . . , b,~. 

The upper subnetwork G~: has just h sources and k black arcs as the original 
network G while the lower subnetwork G~ has only white arcs. 

Denote by f ( y )  the cost of an optimal flow in G~ and for any feasible flow 
= (u ,z )  in G~ satisfying (7) let x i j  = z i ( k+j ) , i  = 1 , . . . , k  + h , j  = 1 , . . . , m .  

Also set cij = li(k+j).  
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cb 

c ;  

W1 W~ Wk 

F1 F2 Fk Fk+i Fk+h 

W~+l w~+2 wk+,. 

Fig. 2. Lower and upper subnetworks of G*. 

PROPOSITION 2. FP( h; k) is equivalent to the problem 

k+h m 

(Qhk) minimize f(y) + ~ ~ c q x i j  (9) 
i=1 j= l  

m 

s.t. E xq = yi i = l , . . . , k  + h (10) 
j= l  
k+h 

xij = bj j = l , . . . , m  ( l l )  
i=1 

xij ) O Vi,j (12) 

Yk+i~si i =  1 , . . . , h ,  yE~2.  (13) 

Proof. As we saw above, FP(h; k) is equivalent to finding an optimal flow in 
the network G*. If ~ = (u, z) is an optimal flow in G* and y is defined by (7) then 
y E f~ and the part of the flow ~ in G~ has cost f(y), while the part in G~ is an 
optimal solution of the linear transportation problem 

k+h m 

TP(y) :  minimize  E E e i j x i j  s.t. (10)(11)(12). 
i=1 j= l  

Hence the conclusion. [] 

If we regard F1,. . . ,  F~+h as representing factories and W k + I , . . . ,  Wk+m as rep- 
resenting warehouses, then (Qhk) can be interpreted as the following Production- 
Transportation Problem ( P T P  ( h + k) ): 
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Given the demands b l , . . . ,  bm of the warehouses, the joint cost f ( y )  of pro- 
ducing Yi units of goods at factory Fi, i = 1 , . . . ,  k + h and the transportation 
cost matrix c = [cij], determine the production levels Yl , . . . ,  Yk+h to be 
assigned to the factories together with the transportation pattern [x~j] so as to 
meet all the demands with the cheapest total production-transportation cost. 

PROPOSITION 3. The transformationof F P ( h ; k) to ( Qhk ) requires O (r log 2 r +  
n) elementary operations. 

Proof. This transformation involves solving (h + k) single-source multiple- 
sinks (k + m sinks) shortest path problems in a network with n arcs, r nodes. 
Therefore, using Fredman and Tarjan's implementation of Dijikstra's algorithm 
[5], it can be completed in time O(r  log 2 r + n). When an optimal solution (y, x) 
of (Qhk) has been found then an optimal flow (u, z) on G* can be obtained such that 
zqk+j) = x~j fori = 1 , . . . , k  + h , j  = 1 , . . . , m w h i l e u ,  zi j , i  = 1 , . . . , k + h , j  = 
1 , . . . ,  k are given by an optimal flow in G~. Since the latter network involves 
exactly h + 2k nodes (h sources, k sinks, k intermediate nodes) and k(h + k) 

( k(h + 2k + k )1) arcs, it has at most _ spanning trees (extreme feasible flows), so the 

search for an optimal flow in this network (which can be carried out at least by 
enumerating all spanning trees) requires a bounded time. Finally, from an optimal 
flow (u, z) in G* one can derive an optimal flow x E R n in G by formulas (5) and 
(6), which requires O (n) elementary operations. [] 

4. Algorithm for the Case min{h ,  k]. = 1 

When min{h, k} = 1, i.e. there is only one source or only one nonlinear arc cost, 
we can prove the following 

PROPOSITION 4. The function f ( y )  is concave on fL 
Proof. Note that there is in G* a path from every source to every sink. If h = 1 

then G~ is a single source network and it is well known that an extreme optimal 
flow on G~ exists which is a spanning tree T such that for each i = 1 , . . . ,  k, T 
contains a (unique) path from the (unique) source Fk+l to the sink Fi (see e.g. [6]). 
Let Sp(G~] ) be the set of all such spanning trees of G~r. Clearly every T C Sp(G~]) 
determines a flow x T in G* such that if Ti denotes the path in T from the source 
Fk+l to F~ then the value ~ x T on every arc a of G~ is 

xT(a) = ~ { y i  " arc a belongs to Ti}, (14) 

which is an affine function of y on fL Therefore, the cost fT(Y) of x T is a concave 
function of y on ~. Since 

f (y )  = min{/T(v) :T  Sp(Gb)), (15) 
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the concavity of f ( y )  on f / fol lows.  
ff k = 1 then the cost f ( y )  of the part of the flow in G~ is 

h + l  

f (Y)  = gl(Yl) + ~ Ii1(~i-1 - Yi) 
i=2 

and the concavity of f ( y )  is obvious. [] 

From Proposition 4 it follows that when min{h, k} = 1, (Qhk) is a Production- 
Transportation Problem of type P T P ( h  + k) studied in our previous paper [26]. 
Therefore, FP(h,  k) with min{h, k} = 1 can be solvedby the following 

ALGORITHM 1. 
(1) Transform FP(h,  k) into (Qhk ). 
(2) Solve (Qhk) by the algorithm for P T P ( h  + k) given in [26]. 

THEOREM 1. For fixed h, k, such that min{h, k} = 1 Algorithm 1 solves 
F P( h ; k ), requiring at most O ( r log 2 r + n) + P( m ) elementary operations and 
Q(m) evaluations of  the functions gi(t), i = 1 , . . . ,  k, where n is the number of  
arcs, r the number of  nodes in G, m the number of  sinks, and P ( m ) ,  Q(m) are 
polynomials in ra. 

Proof. As proved in [26] Step 2) requires at most P(m)  elementary operations 
and Q(m) evaluations of gi(t), i = 1 , . . . ,  k. The conclusion then follows from 
Proposition 3. [] 

Remarks. (i) For h -: 1, if ( y, k ) is an optimal solution of (Q 1 k) then an optimal 
flow ~ = (u, z) in G* is given by 

ui = ~ { y ~ "  (IV/, T~) E T~,}, v = 1 , . . . ,  k, (16) 

z l j = ~ { y ~ , : ( F i ,  Wj) eT~, ) i = l , . . . , k + l ,  j = l , . . . , k  
(xi( j-k)  i = l , . . . , k + l ,  j = k + l , . . . , k  + m, 

(17) 

where T~ is the unique path in T from the source Fk+l to F~, L, = 1 , . . . ,  k, and T 
is the spanning tree corresponding to an optimal extreme flow in the network G~ 
(for the given y). 

(ii) For k = 1, if (y, x) is an optimal solution of (Qhl) then an optimal flow 
= (u, z) in G* is given by 

m 

u = yl, zil = s i - 1 -  ~-~xij ( i = 2 , . . . , h + l )  (18) 
j = l  

zij = xi(j-1) (i = 1 , . . . , h +  1; j  = 2 , . . . ,  1 + ra). (19) 
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Bipartite graph of TP* (u). 
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5. Algorithm for General FP(h; k) 

In the general case, when min{h, k} > 1 the function f(y) is no longer concave. 1 
Although the previous method could be modified to overcome this difficulty, it 
would involve solving a transportation problem depending on a (k + h) -dimensional 
parameter y = (Yl, . . . ,  Yk+h), where Yi is the sum of all amounts of flow in G* 
going from Fi to al l the Wj, j = k + 1 , . . . ,  k + m. A more convenient method 
is to use, instead, the parameter u = (Ul, . . . ,  uk), where ui is the amount of flow 
passing through the black arc ai. 

Clearly, u E A, where 

A = { u E R  k : 0 ~ < u i ~ < s ,  i =  1 , . . . , k} ,  (20) 

and s = E)= l  si, see (4). Setting g(u) = Eki=l gi(ui), it is nearly obvious that: 

PROPOSITION 5. FP( h; k) is equivalent to the problem 

k + h  k + m  

(Q*hk) minimize g(u) + ~ ~ lijzij (21) 
i=1 j = l  

k+m~ = ~ ui i = 1 , . . . , k  
(22) s. t. zij [ i k + 1, , k + h j = l  8 i - k  = " " " 

k + h  ~ Uj j = 1 , . . . ,  k 
E z i J =  (. bj-k j k + l , . ,  k §  (23) 
i = l  " 

z~j >~ O Yi,j  (24) 

u C A. (25) 

O* Proof. ( hk) is nothing but the optimal flow problem on the network G* which 
by Proposition 1 is equivalent to the optimal flow problem on G. [] 
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For u E A denote by ~b(u) the optimal value of the parametric transportation 
problem 

k+h k+m 

TP*(u)"  minimize E E lijzij s.t. (22)(23)(24). 
i=1  j = l  

As is well known, ~b(u) is a convex piecewise affine function. Let P* be the 
collection of all linearity pieces (cells) of ~b(u) and for each cell I I E  P* let VII be 
its vertex set. 

PROPOSITION 6. If 

u* E argmin{9(u) + ~b(u)" u C VH, IIE P*} (26) 

and z* is an optimal solution of T P* ( u * ) then ( u * , z* ) is an optimal solution of 

Proof. For u E I I ,  the function ~(u)  is affine, so g(u) + ~b(u) is concave and 
hence, attains its minimum over II at a point in VII. Therefore, u* defined by (26), 
is a minimizer of g(u) + r over the whole A and (u*, z*) is an optimal solution 
of (Q~k). [] 

We are thus led to the following 

ALGORITHM 2. 

(1) Transform FP(h; k) into (Q~k). 
(2) Generate the collection P* of all cells of ~b(u) and 

for each cell II compute its vertex set Vn. Then compute 
u* satisfying (26) and an optimal solution z* of TP*(u*). 

(3) From (u*, z*) deduce an optimal solution of FP(h; k). 

THEOREM 2. Algorithm2 solves F__P(h; k), requiring atmost O(r log 2 r + n) + 
P(ra) elemental_ operations and Q(m) evaluations of the functions gi(t), i = 
1 , . . . ,  k, where P ( m ) and (2 ( ra ) are polynomials in m. 

For the proof of this theorem, we first recall some results from [26]. 
Consider the bipartite graph H of the linear transportation problem TP*(u), 

as depicted in Fig. 3. To simplify the language, we will say arc ( i , j )  to mean arc 
(Fi, Wj). In this graph, if # is an elementary chain beginning at one of the nodes 
F1 , . . . ,  Fk+h then, dividing its arc set into two groups of alternating odd and even 
arcs such that the first arc is odd, we can define 

l ( # ) =  ~ l i j -  ~ lij. (27) 
(i,j) oaa (~,j) even 
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Assume that: 

(Nondegeneracy assumption) Every elementary chain # in H has l(#) r 0. 

The following properties have been established in [26]: 
(i) A spanning tree T of H is said to be dual feasible if there exist real numbers 

{vi, w j } , i  = 1 , . . . , k  + h; j  = 1 , . . . , k  + m satisfying 

vl = O, wj - vi = lij (i, j )  E T, (28) 

wj - vi < lij ( i , j )  • T (29) 

A tree L in H is called a shoot if all the nodes F1 , . . . ,  Fk+h belong to L, while 
every node Wj,  j = 1 , . . . ,  k + m either does not belong to L or is incident to at 
least two arcs of L; the set N = {j  : Wj belongs to L}, which is then called the 
base of the shoot, always satisfies IN[ ~< k + h - 1. A shoot L is said to be proper 
if there exist real numbers {vi, wj} such that 

Vl = 0, wj - vi = lij ( i , j )  E L, (30) 

wj - vi < Iij ( i , j )  f[ L , j  C N.  (31) 

Every dual feasible spanning tree T contains a unique proper shoot L which is 
obtained by removing from T all the nodes Wj that are leaf nodes together with the 
arcs incident to these. Conversely, every proper shoot L can be uniquely extended 
to a dual feasible spanning tree T by defining 

wj = min{vq + lqj : q = l , . . . , k  + h} j ~ N (32) 

Ji = { j  : vi + lij < vq + lqj Yq r i} i =  l , . . . , k  + h (33) 

T = L U { ( i , j ) : j E J i ,  i = l , . . . , k + h } .  (34) 

( n o t e t h a t J i C { 1 , . . . , k + m } \ N ,  J i M J q = 0  V i T s  
{ 1 , . . . , k +  m})  

(ii) If L is a proper shoot of base N and T the associated dual feasible spanning 
tree, then there exists a uniquely defined basic solution x T = [~ij(u)] of system 
(22)(23) such that 

~ij(u) = 0 Y( i , j )  ~f T (35) 

Thus for every (i, j )  E T, ~ij(u) is an affine function of u and 

f uj j E J i f l  { 1 , . . . , k }  6j(u) 
bj-k j E Ji N {k + 1 , . . . ,  k + m}  (36) 

while the polytope 

I I = { u e A : ~ i j ( u ) ) O  V(i , j )  c L }  (37) 

is a cell of g,(u). Conversely, for any cell II of r  there exists exactly one proper 
shoot L such that II is defined by (37). 
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Also note that in (37) the inequalities ( i j ( u ) )  0 V(i , j )  E L imply 0 ~< ui <~ 
8, i = 1 , . . . ,  k, so actually 

II -- {u  E Rk  : ~ij(u) ) 0 V(i , j )  E L}. (38) 

(iii) The vector (v,  w) = {vi,  i = 1 , . . . , k  + h; w j , j  E N }  associated with a 
proper shoot L of base N is a basic solution of the system 

V l = 0 ,  wj - vi <<. lij, i = l , . . . , k  + h; j E N .  (39) 

Conversely, any basic solution (v, w) of this system determines a proper shoot 
L = { ( i , j )  : wj - vi = lij, i = 1 , . . . ,  k + h ; j  E N }  whose base is contained in 
N.  

Thus, the collection of cells of  ~b(u) can be found by computing the  basic 
solutions ofsys temsof theform(39) ,wi thN C {1, . . .  , k + m } ,  ]NI ~ k + h - 1 .  

(iv) Since ILl = 2(k + h - 1), by (38) each cell II is a polytope defined by a 
system of 2(k + h - 1) linear inequalities in R k, hence has a bounded number of 
vertices which can be computed in bounded time. 

It follows from the above that Step 2 of Algorithm 2, i.e. the computation of the 
point u* that achieves the minimum ofg (u )  + O(u) among the set of all vertices 
of all cells I I E  P* can be carried out according to the following 

Main Procedure  (under nondegeneracy assumption). 
For each set N C {1 , . . . ,  k + m} such that INI ~< k + h - 1 do: 

1. Compute the vertex set of the polytope (39) and retain only the vertices (v, w) 
such that, for every j E N there exist at least two indices i satisfying wj - vi = 
Iij. 

2. For 
2.1 

each vertex (v, w) thus obtained do: 
Form the proper shoot 

L = { ( i , j ) :  wj - v i  = l i j ,  i =  1 , . . . , k + h ; j  E N }  
and using formulas (32)(33)(34) extend L to a dual feasible spanning tree 
T. 

2.2 Compute x T = [~ij(u)] and define the cell 

II = {u  E R k :  ~ij(u) ) 0 V(i , j )  E L} 
2.3 Compute the vertex set of  II. Whenever a vertex u is obtained and u* has 

not yet been defined, or g(u) + ~b(u) < 9(u*) + ~b(u*) then reset u* = u. 
End do 

End do 

PROPOSITION 7. The Main Procedure requires at most P ( m )  elementary oper- 
ations and (2 ( m ) evaluations o f  the functions gi(t), i = 1 , . . . ,  k, where P (  m ) and 
Q ( m ) are polynomials in m. 

Proof. Since h, k are fixed, for each set N the system (39) has a bounded number 
of basic solutions which can be computed in bounded time. So for each set N,  step 
1 of the Main Procedure requires a bounded time and generates a bounded number 
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of points (v, w). Then for each point (v, w) step 2 of the Main Procedure requires 
a bounded number of elementary operations and a bounded number of evaluations 
of the functions gi(t), i = 1, . . . ,  k. Therefore, every set N is processed in bounded 
time with a bounded number of evaluations of the functions gi(t), i = 1, . . . ,  k. 

The conclusion is then immediate because there are in all y ~  k m distinct 
q--=l 

sets N C { 1 , , . . . ,  k + m} of size at most k + h - 1 and this number is polynomial 
in m. [] 

Remarks. (i) By a result of Balinski and Wallace (see [29]), the total number 

of cells is ( m  + 2k + h -  2) k + h - 1 . Also note that since I i i =  ~? for i = 1 , . . . ,  k (see 

Remark to Proposition 1) if u E Vri is such that ~ii(u) > 0 for some i = 1 , . . . ,  k, 
then u cannot be optimal for (26), so in (28) it suffices to consider only those u 
satisfying ~ii = 0, i = 1 , . . . ,  k. 

(ii) As shown in [26], the nondegeneracy assumption can always be made to 
hold by replacing each lij with lij + je i, where e > 0 is arbitrarily small. Since 
(28) implies that vi = l(#i), wj = l(tJj), where #i(vj, resp.) is the chain in T from 
F1 to Fi(Wj, resp.), vi, wj will become polynomials in e. Then, in all the above 
formulas, an inequality like (29) for all arbitrarily small e > 0 should mean that 
the vector of coefficients of the polynomial (ordered by increasing powers of e) 

l(t.,j) - l(#i) - (lij + je i) 

is lexicographically inferior to 0,~ 
Note that all the polynomials in e that can appear have at most degree k + h, 

so all the vectors that have to be compared when using the e-perturbation have 
dimension at most k -t- h + 1. For fixed h, k this adds only a bounded number of 
elementary operations for each comparison considered. Therefore, in any case, all 
the cells can be computed in polynomial time. We are now in a position to complete 
the proof of Theorem 2. 

Proof of Theorem 2. By Proposition 7 and the above discussion Step 2 of 
Algorithm 2 requires, in any case, at most P(m) elementary operations and Q (m) 
evaluations of the functions gi(t), i = 1 , . . . ,  k. On the other hand, by Proposition 
3, Steps 1 and 3 require O(r log 2 r -4- n) elementary operations. [] 

6. Conclusion 

In this paper, we have proved that MCCNFP with a fixed number of sources and 
nonlinear arc costs is strongly polynomially solvable. The proposed algorithms 
are practical for small values of h, k, and especially efficient for h + k ~< 3 (see 
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[23], [25]). For larger values of h, k they quickly loose practicability, which can 
be seen from the fact that their time bound is exponential in h, k, as should be 
expected from the NP-hardness of MCCNFP. There are, however, at least two 
ways to alleviate the difficulty when h, k are too large. First, by the above approach 
FP(h; k) is reduced to a problem of minimizing a certain nonlinear function over 
a discrete set, namely the collection of cells of the optimal cost function of a 
parametric linear transportation problem. Since a natural concept of neighbouring 
elements can be defined in this discrete set (two ceils being neighbouring if the 
corresponding vertices of the dual transportation polytope are adjacent), some 
heuristic or stochastic procedures, such as tabu search or simulated annealing, 
could be incorporated in the basic algorithms to enhance their practicability. In 
a subsequent paper we will show how this can be done and report computational 
experience with the resulting hybrid algorithm. Second, using the reduced network, 
FP (h; k) which originally involves n variables is converted into problem (26) with 
only k variables. Since in many cases k is much smaller than n, problem (26) can 
be practically solved by an adaptation of recently developed global optimization 
algorithms [21]. We refer the interested reader to the paper [12], where such an 
approach has been applied to a cheapest flow problem in a network involving 
simultaneously arcs with concave and arcs with convex costs. 
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Note 

I In the proof of Proposition 4 the formula (14) is no longer true when min { h, k } > 1. To convince 
the reader consider the special case when all costs in G~r are linear. Then f (y )  is the cost of an optimal 
flow, i.e. the optimal value of a linear program of the form 

mincxs. t .  A x = y ,  x>lO, 

hence as is well known must be a convex function of y. It is easy to construct an example where the 
optimal value of the above program is convex but not affine, hence not concave. 
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